

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changes in 0.3.2 (2019-07-22)

Bugfixes:

	this.main should have just been main

Changes in 0.3.1 (2019-07-22)

Bugfixes:

	Fixed issue where invalid slack ghost ids were being used for pills #167.

	Correctly add reply fallbacks on messages in threads, and edits in threads #169. Thanks @Cadair!

	Fix an issue where webhooks would fail to bridge across messages #165.

Changes in 0.3.0 (2019-07-19)

No changes since 0.3.0-rc3

Changes in 0.3.0-rc3 (2019-07-12)

Bugfixes:

	Fix slack -> matrix emote messages

	Stop logging bodies

Changes in 0.3.0-rc2 (2019-07-11)

Bugfixes:

	Remove call to onSlackReactionRemoved (as it’s not used)

	teams.db path should use dbdir #156. Thanks @vrutkovs

Changes in 0.3.0-rc1 (2019-07-05)

Features:

Special shoutout to @Cadair for this release, who dedicated a lot of his time to these features.

	Implement message deletion #129.

	Add support for edits #130.

	Add support for reactions #131.

	Add support for threading (using replies) #132.

	Support displayname and avatar lookups for Slack bots #141

	Replace channel mentions with canonical aliases for bridged rooms #146.

	Support slack attachments #126 #147. Thanks @umitalp for the inital groundwork and @Cadair for the cleanup.

Bugfixes:

	Fix the discrepancy between nicks and names in pills and mentions #111. Thanks @Cadair!

	Fix an issue where slack thumbnails were always assumed to be JPEGs #123. Thanks @Berulacks

Misc:

	Update README to include instructions on authentication setup #140. Thanks @ineiti.

	Remove duplication of registration path and tidy example config #143. Thanks @Cadair.

	Add a dockerfile #145. Thanks @Cadair.

Changes in 0.2.0 (2018-10-24)

No changes since rc3

Changes in 0.2.0-rc3 (2018-10-23)

Bugfixes:

	Fix S->M mentions being accidentally escaped. #109 Thanks @Cadair!

Changes in 0.2.0-rc2 (2018-10-20)

Bugfixes:

	Users can now log out from their slack account.

	The emoji key name is now sent if the text could not be replaced.

Changes in 0.2.0-rc1 (2018-10-18)

NOTE: This is the first release of the Slack bridge. 0.1.0 has been the version number
for previous efforts but was never an official release. The list below is all the changes
merged onto the develop branch.

Features:

	Support for the Slack Bot API to allow users to bridge their communities with more features than
using webhooks! #89. Thanks to @perissology for doing the legwork there.

	More provisioning APIs to support the new Bot API bridging methods. #101

	Support triple backtick code syntax #85

	Add support for winston logging through the new bridge component #94

	Allow specifying a dbdir for custom locations of stores #95. Thanks @Cadair!

	Convert Riot Pills to Slack mentions #96. Thanks @Cadair!

	Add support for conversion of snippets to code messages in Matrix #97. Thanks @Cadair!

	Add support for “gitter bridge” style edit messages #98. Thanks @Cadair!

	Implement bridging of Matrix mentions to Slack #99. Thanks @Cadair!

Bugfixes:

	Fallback to userstore for making user pills if the Slack API fails to find a user #84

	Fixed file uploads so they work again #91. Thanks @Cadair!

	Fixed emoji not being substituted on the Matrix side #103.

Misc:

	The bridge now uses matrix-appservice-bridge 1.7.0

matrix-appservice-slack

A Matrix <–> Slack bridge

This is currently a very barebones bridge, it just does basic text in
pre-enumerated channels. It will become more exciting.

Installation

$ git clone ...
$ cd matrix-appservice-slack
$ npm install

Setup

	Create a new Matrix room to act as the administration control room. Note its
internal room ID.

	Pick/decide on two spare local TCP port numbers to use. One will listen for
messages from Matrix and needs to be visible to the homeserver. The other
will listen for messages from Slack and needs to be visible to the internet.
Take care to configure firewalls appropriately. These ports will be notated
as $MATRIX_PORT and $SLACK_PORT in the remaining instructions.

	Create a config.yaml file for global configuration. There is a sample
one to begin with in config/config.sample.yaml you may wish to copy and
edit as appropriate.

At minimum this needs to contain:

slack_hook_port: $SLACK_PORT
bot_username: "localpart for the bot's own user account"
username_prefix: "localpart prefix for generated ghost users"

homeserver:
 url: "http URL pointing at the homeserver"
 server_name: "domain part of the homeserver's name. Used for
 ghost username generation"

matrix_admin_room: "the ID of the room created in step 1."

	Generate the appservice registration file (if the application service runs
on the same server you can use localhost as the $HOST name):

$ node app.js -r -c config.yaml -u "http://$HOST:$MATRIX_PORT"

	Start the actual application service. You can use forever

$ forever start app.js -c config.yaml -p $MATRIX_PORT

or node

$ node app.js -c config.yaml -p $MATRIX_PORT

	Copy the newly-generated slack-registration.yaml file to the homeserver.
Add the registration file to your homeserver config (default homeserver.yaml):

app_service_config_files:
 - ...
 - "/path/to/slack-registration.yaml"

Don’t forget - it has to be a YAML list of strings, not just a single string.

Restart your homeserver to have it reread the config file an establish a
connection to the bridge.

	Invite the bridge bot user into the admin room, so it can actually see and
respond to commands. The bot’s user ID is formed from the bot_username
field of the config file, and the homeserver’s domain name. For example:

/invite @slackbot:my.server.here

The bridge itself should now be running.

To actually use it, you will need to configure some linked channels.

Provisioning

This bridge allows linking together pairs of Matrix rooms and Slack channels,
relaying messages said by people in one side into the other. To create a link
first the individual Matrix room and Slack channel need to be created, and then
a command needs to be issued in the administration console room to add the link
to the bridge’s database.

There are 2 ways to bridge a room. The recommended way uses the newer Slack events api
and bot users. This allows you to link as many channels as you would like with only
1 Slack integration. The legacy way uses incoming/outgoing webhooks, and requires
2 Slack integrations per channel to be bridged.

Recommended - Events API

	Add a custom app to your Slack team/workspace by visiting https://api.slack.com/apps
and clicking on Create New App.

	Name the app & select the team/workspace this app will belong to.

	Click on bot users and add a new bot user. We will use this account to bridge the
the rooms.

	Click on Event Subscriptions and enable them. At this point, the bridge needs to be
started as Slack will do some verification of the request rul. The request url should be
https://$HOST:$SLACK_PORT". Then add the following events and save:

Bot User Events:

- team_domain_change
- message.channels
- chat:write:bot
- message.groups (if you want to bridge private channels)
- users:read
- team.info

	Skip this step if you do not want to bridge files.
Click on OAuth & Permissions and add the following scopes:

	files:write:user

Note: any media uploaded to matrix is currently accessible by anyone who knows the url.
In order to make Slack files visible to matrix users, this bridge will make Slack files
visible to anyone with the url (including files in private channels). This is different
then the current behavior in Slack, which only allows authenticated access to media
posted in private channels. See MSC701 [https://github.com/matrix-org/matrix-doc/issues/701]
for details.

	Click on Install App and Install App to Workspace. Note the access tokens show.
You will need the Bot User OAuth Access Token and if you want to bridge files, the
OAuth Access Token whenever you link a room.

	For each channel you would like to bridge, perform the following steps:

	Create a Matrix room in the usual manner for your client. Take a note of its
Matrix room ID - it will look something like !aBcDeF:example.com.

	Invite the bot user to the Slack channel you would like to bridge.

/invite @bot-user-name

You will also need to determine the “channel ID” that Slack uses to identify
the channel, which can be found in the url https://XXX.slack.com/messages/<channel id>/.

	Issue a link command in the administration control room with these
collected values as arguments:

with file bridging:

link --channel_id CHANNELID --room !the-matrix:room.id --slack_bot_token xoxb-xxxxxxxxxx-xxxxxxxxxxxxxxxxxxxx --slack_user_token xoxp-xxxxxxxx-xxxxxxxxx-xxxxxxxx-xxxxxxxx

without file bridging:

link --channel_id CHANNELID --room !the-matrix:room.id --slack_bot_token xoxb-xxxxxxxxxx-xxxxxxxxxxxxxxxxxxxx

These arguments can be shortened to single-letter forms:

link -I CHANNELID -R !the-matrix:room.id -t xoxb-xxxxxxxxxx-xxxxxxxxxxxxxxxxxxxx

Legacy - Webhooks

	Create a Matrix room in the usual manner for your client. Take a note of its
Matrix room ID - it will look something like !aBcDeF:example.com.

	Create a Slack channel in the usual manner.

	Add an “Incoming WebHooks” integration to the Slack channel and take a note
of its “Webhook URL” from the integration settings in Slack - it will look
something like https://hooks.slack.com/services/ABC/DEF/123.

	Add an “Outgoing WebHooks” integration to the Slack channel and take a note
of its token field. Add a URL to this web hook pointing back at the
application service port you configured during setup.

You will also need to determine the “channel ID” that Slack uses to identify
the channel. Unfortunately, it is not easily obtained from the Slack UI. The
easiest way to do this is to send a message from Slack to the bridge; the
bridge will log the channel ID as part of the unrecognised message output.
You can then take note of the channel_id field.

	Issue a link command in the administration control room with these
collected values as arguments:

link --channel_id CHANNELID --room !the-matrix:room.id --webhook_url https://hooks.slack.com/services/ABC/DEF/123

These arguments can be shortened to single-letter forms:

link -I CHANNELID -R !the-matrix:room.id -u https://hooks.slack.com/services/ABC/DEF/123

See also https://github.com/matrix-org/matrix-appservice-bridge/blob/master/HOWTO.md for the general theory of all this :)

Mattermost

Because Mattermost’s webhook APIs are Slack-compatible, the Matrix <–> Slack bridge
also works with it. The webhook configuration is very similar to Slack’s and is
documented on Mattermost’s website [https://www.mattermost.org/webhooks/].

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

